Pepsin

Pepsin is an endopeptidase that breaks down proteins into smaller peptides (that is, a protease). It is produced in the stomach and is one of the main digestive enzymes in the digestive systems of humans and many other animals, where it helps digest the proteins in food. Pepsin has a three-dimensional structure, of which one or more polypeptide chains twist and fold, bringing together a small number of amino acids to form the active site, or the location on the enzyme where the substrate binds and the reaction takes place. Pepsin is an aspartic protease, using a catalytic aspartate in its active site.

It is one of three principal proteases in the human digestive system, the other two being chymotrypsin and trypsin. During the process of digestion, these enzymes, each of which is specialized in severing links between particular types of amino acids, collaborate to break down dietary proteins into their components, i.e., peptides and amino acids, which can be readily absorbed by the small intestine. Pepsin is most efficient in cleaving peptide bonds between hydrophobic and preferably aromatic amino acids such as phenylalanine, tryptophan, and tyrosine.[3]

Pepsin’s proenzyme, pepsinogen, is released by the chief cells in the stomach wall, and upon mixing with the hydrochloric acid of the gastric juice, pepsinogen activates to become pepsin.[2]

History

Pepsin was one of the first enzymes to be discovered, and is polypeptidic in nature. It was discovered in 1836 by Theodor Schwann. Schwann coined its name from the Greek word πέψις pepsis, meaning “digestion” (from πέπτειν peptein “to digest”).[

Precursor

Pepsin is expressed as a zymogen called pepsinogen, whose primary structure has an additional 44 amino acids.

In the stomach, chief cells release pepsinogen. This zymogen is activated by hydrochloric acid (HCl), which is released from parietal cells in the stomach lining. The hormone gastrin and the vagus nerve trigger the release of both pepsinogen and HCl from the stomach lining when food is ingested. Hydrochloric acid creates an acidic environment, which allows pepsinogen to unfold and cleave itself in an autocatalytic fashion, thereby generating pepsin (the active form). Pepsin cleaves the 44 amino acids from pepsinogen to create more pepsin.